
both T1 and T2 transgenic plants (Fig. 4C).
The amount of NPTII protein was not af-
fected by infection in T3 plants, in which
the NPTII transgene does not share homol-
ogy with the CaMV promoter. The distribu-
tion of NPTII protein between dark green
island and chlorotic vein border tissue of T1
transgenic plants (Fig. 4C) reflected that of
GUS activity (Fig. 2B).

Suppression of the NPTII gene might
have occurred through interference from the
adjacent GUS gene. Alternatively, CaMV
infection might result in host regulation of
the 35S RNA promoter. Therefore, we test-
ed the effects of CaMV infection on expres-
sion of the GUS transgene of the T3 con-
struct (Fig. 1A), for which viral homology is
limited to the CaMV 35S RNA promoter
sequence. CaMV infection suppressed GUS
expression in T3 transgenic plants with the
same symptomatic pattern as that in T1
transgenic plants (Fig. 1C). However, silenc-
ing in T3 transgenic plants was not likely
mediated by posttranscriptional mechanisms
because the construct lacked viral RNA ho-
mology. Nuclear run-on experiments re-
vealed that transcription of the T3 GUS
transgene was inhibited in infected plants,
despite concurrent transcription of the
CaMV minichromosome (Fig. 4A). We sug-
gest that transcriptional silencing of the 35S
RNA promoter in the CaMV minichromo-
some does not occur in the presence of post-
transcriptional silencing. However, tran-
scriptional suppression of the CaMV 35S
RNA promoter in the T3 construct suggests
that viral transcription could potentially be
down-regulated in those infections that do
not result in recovery from symptoms as in
B. rapa. Such regulation could explain the
differential accumulation of CaMV in chlo-
rotic and dark green tissue observed in the
absence of posttranscriptional silencing (15).

Thus, plants respond to pathogen inva-
sion by regulating pathogen gene expres-
sion, apparently at both transcriptional and
posttranscriptional levels. Posttranscrip-
tional suppression of viral genes results in
posttranscriptional cosuppression of trans-
genes that share sequence homology with
the virus. Sequences homologous to the
viral promoter can be silenced at the tran-
scriptional level. Posttranscriptional sup-
pression of gene expression appears to take
precedence over transcriptional regulation,
possibly by preventing transcriptional sup-
pression of the same gene, thereby linking
cytoplasmic and nuclear gene regulatory
mechanisms.

Most gene silencing phenomena that
have been described in plants occur as a
result of transformation with transgenes (5,
9). Gene silencing can also be elicited by
viruses in the absence of transgenes (3, 4).
It is not clear whether this response is an-

tipathogenic or whether it is more broadly
related to regulation of highly expressed
genetic elements.
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Contingency and Determinism in Replicated
Adaptive Radiations of Island Lizards

Jonathan B. Losos,* Todd R. Jackman, Allan Larson,
Kevin de Queiroz, Lourdes Rodrı́guez-Schettino

The vagaries of history lead to the prediction that repeated instances of evolutionary
diversification will lead to disparate outcomes even if starting conditions are similar. We
tested this proposition by examining the evolutionary radiation of Anolis lizards on the
four islands of the Greater Antilles. Morphometric analyses indicate that the same set of
habitat specialists, termed ecomorphs, occurs on all four islands. Although these similar
assemblages could result from a single evolutionary origin of each ecomorph, followed
by dispersal or vicariance, phylogenetic analysis indicates that the ecomorphs originated
independently on each island. Thus, adaptive radiation in similar environments can
overcome historical contingencies to produce strikingly similar evolutionary outcomes.

The theory of historical contingency pro-
poses that unique past events have a large
influence on subsequent evolution (1–3). A
corollary is that repeated occurrences of an
evolutionary event would result in radically
different outcomes (4). Indeed, faunas and

floras that have evolved in similar environ-
ments often exhibit more differences than
similarities (5–7). These differences in evo-
lutionary outcome probably result from
clade-specific factors that cause taxa to re-
spond to similar selective factors in differ-
ent ways, as well as from unique historical
events and subtle environmental differenc-
es in the different areas (2, 8). Here we
show that such factors will not always lead
to disparate outcomes.

Anolis lizards are a dominant element of
the Caribbean fauna. On each of the islands
of the Greater Antilles (Cuba, Hispaniola,
Jamaica, and Puerto Rico), lizard assem-
blages are composed of species that differ in
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habitat use. The same set of “ecomorphs”—
species specialized to use particular structur-
al microhabitats—occurs on each island,
except that two ecomorphs are absent from
Jamaica and one from Puerto Rico (9).

We measured six morphometric charac-
teristics that are closely linked to habitat use
(10, 11) for members of each ecomorph class
from each island to investigate whether the
ecomorphs constitute objectively recogniz-
able classes (12). Our analyses reveal distinct
ecomorph classes; members of an ecomorph
class are more similar to other members of
that class from different islands than they are
to members of different ecomorph classes
from their own island (Fig. 1A) (13).

The presence of the same set of eco-
morphs on each island suggests that either
ecomorphs evolved only once and then, by
colonization or vicariance, occupied all four
islands, or that each ecomorph evolved in-
dependently on all four islands. Because six
ecomorph classes exist (crown-giant, grass-
bush, trunk, trunk-crown, trunk-ground,
and twig; the classes are named for the
microhabitat that constituent species nor-
mally use), the single-evolution hypothesis
predicts that only five instances of the evo-
lution of new ecomorphs have occurred (as-
suming that one ecomorph is ancestral). By
contrast, the recurring evolution hypothesis
(9) predicts that none of the ecomorph
classes form a monophyletic group and that
17 to 19 evolutionary transitions between
ecomorph classes have occurred (14).

Phylogenetic analysis based on mito-
chondrial DNA sequences (15, 16) for 55
species (17) indicates that, with two excep-
tions, members of the same ecomorph class
from different islands are not closely related
(Fig. 1B). Statistical analyses (18) indicate
that none of the ecomorph classes consti-
tutes a monophyletic group relative to
members of the other classes and that at
least 17 evolutionary transitions among

ecomorph classes have occurred (Table 1)
(19, 20). Although similar sets of eco-
morphs have evolved independently on

each island, the sequence by which they
have evolved differs among islands (Fig.
1C) (21).

Table 1. Hypotheses tested with DNA sequence data. A significant
result denotes rejection of the stated hypothesis. D is the difference in
length between the most parsimonious tree (8889 steps) and the tree
constrained to conform to the stated hypothesis. Ts is the test statistic for
the Wilcoxon signed-ranks test. n is the number of characters that differed

in numbers of changes on the two trees. Z is the normal approximation
when n . 100 (25). “Difference” is the difference in negative log likelihoods
between the maximum likelihood tree (–ln L 5 41,059.9) and the tree
constrained to conform to the stated hypothesis. t is the Student‘s t test
statistic.

Hypothesis D Ts n Z Parsimony
P value

Likelihood
difference t Likelihood

P value

Monophyly of ecomorph class
Crown-giant 120 5,350 229 7.8 ,0.001 424.2 7.5 ,0.001
Grass-bush 165 17,647 339 6.2 ,0.001 633.8 8.5 ,0.001
Trunk 42 2,016 113 3.4 ,0.001 110.0 2.5 0.014
Trunk-crown 201 7,921 289 9.1 ,0.001 771.0 11.6 ,0.001
Trunk-ground 175 22,927 382 6.3 ,0.001 546.5 11.4 ,0.001
Twig 99 12,882 270 4.2 ,0.001 384.0 6.6 ,0.001

Shortest tree with
16 ecomorph transitions 5 2,706 106 0.4 0.683 51.1 1.4 0.171
15 ecomorph transitions 25 6,444 172 1.5 0.128 103.1 2.7 0.007
14 ecomorph transitions 48 7,803 198 2.5 0.011 212.3 4.5 ,0.001

A

B

C

Fig. 1. (A) UPGMA phenogram showing that members of the same ecomorph class cluster in morpho-
logical space regardless of geographic affinities. Branch lengths are proportional to the distance separat-
ing species or clusters in morphological space. Letters indicate the island on which a species is found (C,
Cuba; H, Hispaniola; J, Jamaica; P, Puerto Rico). The shading of the branches connecting the ecomorph
classes has no significance. (B) The most parsimonious tree derived from the molecular data indicates
frequent transitions among ecomorph classes. The lengths of the branches have no significance. (C)
Topology of the four ecomorphs common to all islands, extracted for each island separately from the most
parsimonious phylogeny.
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One hypothesis to explain the repeated
evolution of the same ecomorph types is
that the diversity of morphological variants
that can be produced by anoles is con-
strained to these ecomorphs. However, the
existence of several Greater Antillean spe-
cies, usually restricted to montane areas (9),
and many mainland species (22) that are
not members of any of the ecomorph classes
shows that morphological diversification
among anoles is not constrained to produce
only members of these ecomorph classes.
Rather, the recurring evolution of ecologi-
cally and morphologically similar species in
these replicate adaptive radiations suggests
that adaptation, rather than constraint, is
responsible for the predictable evolutionary
responses of Anolis lizards.

The phylogenetic analysis reveals only
two cases in which an ecomorph has
evolved more than once on a single island.
Interspecific competition, which is intense
among anoles (23) and may drive their
adaptive radiation (9, 24), is probably re-
sponsible; once an ecomorph niche is filled
on an island, other species are excluded
from utilizing that niche. Thus, the impor-
tance of historical contingency depends on
the frame of reference: Among islands, it
has little discernible effect in that the same
ecomorphs evolve on each island, whereas
within each island, prior evolutionary
events limit the options available to partic-
ular species and thus determine the direc-
tions in which evolution can proceed.
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Monoallelic Expression of the
Interleukin-2 Locus
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The lymphokine interleukin-2 (IL-2) is responsible for autocrine cell cycle progression and
regulation of immune responses. Uncontrolled secretion of IL-2 results in adverse re-
actions ranging from anergy, to aberrant T cell activation, to autoimmunity. With the use
of fluorescent in situ hybridization and single-cell polymerase chain reaction in cells with
different IL-2 alleles, IL-2 expression in mature thymocytes and T cells was found to be
tightly controlled by monoallelic expression. Because IL-2 is encoded at a nonimprinted
autosomal locus, this result represents an unusual regulatory mode for controlling the
precise expression of a single gene.

IL-2 is a growth factor important in the
regulation and differentiation of lympho-
cytes and natural killer cells (1). Produced
by a subpopulation of activated T cells, IL-2
also plays a pivotal role in the generation of
an adoptive immune response. Decreased
secretion or the complete absence of IL-2 in
humans is associated with primary and sec-
ondary immunodeficiencies (2). Mice ho-

mozygous for an IL-2 null mutation
(IL-22/2) have a compromised immune sys-
tem with alterations of both cellular and
humoral functions (3). Overproduction of
IL-2 results in an impaired immune re-
sponse with autoimmunity, breaking of
clonal anergy, and suppression of certain T
cell functions (4). IL-2 expression, there-
fore, is firmly controlled by multiple signal-
ing pathways emanating from the T cell
receptor and antigen-independent corecep-
tors (5). These signals regulate the tran-
scriptional control of ubiquitous and T cell–
specific factors, which transactivate tran-
scription of the gene encoding IL-2 in vivo
through binding to the promoter and en-
hancer sequences using an all-or-nothing
mechanism (5). Coreceptors also transduce
signals that stabilize IL-2 mRNA (6).

The number of functional IL-2 alleles
may also determine the amount of IL-2 pro-
duced. Therefore, we investigated whether T
cells heterozygous for the IL-2 null mutation
produce less IL-2 than wild-type T cells. We
stimulated CD41 T cells purified from wild-
type and heterozygous mice. The amount of
IL-2 produced by concanavalin A (Con A)–
treated IL-21/2 T cells was decreased by half
when compared with that produced by T
cells from wild-type mice (Fig. 1). As expect-
ed, Con A stimulation of IL-22/2 T cells did
not result in detectable IL-2 secretion.

Was each heterozygous CD41 T cell pro-

ducing only half of the amount of IL-2 pro-
duced by wild-type cells, or were only half of
the CD41 T cells secreting amounts of IL-2
comparable with that secreted by wild-type T
cells? Concurrent transcription from both
(that is, the mutant and the wild-type) alleles
of the IL-2 gene would lead to the first result,
whereas the latter result would be obtained if
allele-specific expression occurred from only
one of the two copies of the IL-2 gene. To
distinguish between these two mutually ex-
clusive models, we determined IL-2 secretion
at the single-cell level. Mature CD41 thymo-
cytes and CD41 peripheral T cells were stim-
ulated with Con A and subsequently stained
for the presence of IL-2 (7). About half of the
CD41 T cells from 3- to 4-week-old het-
erozygous mice stained positively for IL-2
(Fig. 2, A and B, left). In agreement with
these data, limiting dilution assays showed
that the relative frequency of IL-2–secreting
CD41 T cells was diminished by a third to a
half in heterozygous mice in comparison with
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Fig. 1. The genotype of IL-2 mutant mice controls
the amount of IL-2 secreted. IL-2 production in
response to Con A stimulation. Purified T cells from
heterozygous and homozygous IL-2 mutant mice
and from wild-type mice were stimulated in vitro by
Con A in RPMI 1640 medium (Gibco-BRL) supple-
mented with 10% fetal bovine serum (Sigma), pen-
icillin, streptomycin, and 2-mercaptoethanol. After
24 hours in culture, serial dilutions of supernatant
were assayed on 5 3 103 CTLL-20 cells in the
presence of mAb to IL-4 (11B11). Proliferation was
measured by [3H]thymidine incorporation during
the last 4 hours of a 24-hour assay. The graph is
representative of three independent experiments
and each experiment had less than 10% variability.
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